
A-19389 CAVES - COMPUTER-AIDED VEHICLE EMBARKATION SYSTEN(U) L1
NAVAL POSTGRADUATE SCHOOL MONTEREY CA J N BYZENSKI

UNCLASSIFIED F/G 155 M

mnsoonshi
Ehhmhmmhhhhhm

lI7I

,]o5

i:is

'III

11.8

11.25 1=111

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARS-I963-A

- ,- , .- t-,. .,,-......- .-.. . , .. ,.- .. , -. , . . ., ,. .,.

,...° .,-: -... .-.-.... ,.-.-..-.. . .,., -.... ', .,-; ..- . .* ,'.,* .. ,, ., , ,

"*" .:.-: -.- "> .' K." ., • , .".. .,4" ,%'.' '. ' '. ,"_ ," '.%,' ' ".'-". . . , . . , ," ",,: .. - .. ,

NAVAL POSTGRADUATE SCHOOL
Monterey, California

["0

* Lol

, DTIC
IELECTE..

THESIS
CAVES - COMPUTER-AIDED VEHICLE

EMBARKATION SYSTEM

-1. by

*John Michael Byzewski

June 1985

-M Thesis Advisor: Larry Williamson

Approved for public release; distribution is unlimited.

8 '1 - ,..,

.:%t ',¢l'" ''i " -""" "" "

SECURITY CLASSIFICATION OF THIS PAGE C1~DO* &Weve

REPORT DOCUMENTATION PAGE 3EE COTMPTN ON

OTNUMBE 1 2. OOVT ACCESSION NO 3- RECIPIENT'S CATALOG NUMBER

6.TIL (an~dSubtitle) a. TYof REPORT a PERIOD COVERED

CAVES - Computer-aided Vehicle Embarkation Master's Thesis
System June 1985

S. PERFORMING ONG. REPORT NUMBER

7. AUTHOR(4) 9. CONTRACT OR GRANT NUMBER(@)

John Michael Byzewski

S. PERFORMING ORGANIZATION NAME AND ADDRESS IQ. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMES

Naval Postgraduate School
Monterey, California 93943

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATS

Naval Postgraduate School June 1985
Monterey, California 93943 IS. NUMBER OF PAGES

14. MONITORING AGENCY NAMIE A, ADDRIESS(ii different fro Comitrelfli Office*) III. SECURITY CLASS. (of this report)

Ila. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered #a block *.it diffeent krns Roert)

14. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on rewer@* olde it necessary and identify by block number)

Pallet loading
Vehicle loading
Cutting-stock
Templ ate-l ayout
KnaDsack

20. ABSTRACT (Continue an power** side it necessary and identify by Weoek nuember)

In this thesis the two-dimensional vehicle loading problem is
considered: that is, the problem of loading a rectangular deck of size
L by W of a ship, drawing from a set of n vehicles. The objective is to
maximize the area covered on the deck by the vehicles loaded. A heuristic
algorithm is employed to solve the two-dimensional loading problem. A
computer-aided vehicle embarkation system (CAVES) is developed to assist
embarkation personnel to load vehicles on board a ship. Caves provides the

Do OO 7 1473 EDITION OF I Nov go is OBSOLETE1

SN 0102LF. 014 6601 SCURITY CLASSIFICATION OF THIS PAGE (IF"n O&t nfd

SUCURIYV CLASSIFICATION OF THIS PG WNDI M0

20. (Cont.)

* Embarkation Officer the fld~ibility and portability needed to make

real time decisions about vehicle load plans.

I tj

N 0 102. LF- 0 14-66012

SKCU~f Y CLASIFICAION OF iNIS PAGE('te DO& Entmo

Approved for public release; distribution is unlimited.

CAVES - Computer-aided Vehicle Embarkation System

by

John M. Byzewski
Captain, United States Marine Corps

B.S., United States Naval Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL

JUNE 1985

Author:

Approved by: V
• ' rry Willia n, Thesis vsor

-D nald E. B6n r cond Re er

Gordon E. Latta, Chairman, Department of
Mathematics

-Kneale T. Masa 7,1Qnof
"" Information and Policy Miences

3

.'.... .. • . , * *......

,_76

ABSTRACT

, In this thesis the two-dimensional vehicle loading

problem is considered: that is, the problem of loading a

rectangular deck of size L by W of a ship, drawing from

a set of n vehicles. The objective is to maximize the area

covered on the deck by the vehicles loaded. A heuristic

algorithm is employed to solve the two-dimensional loading

problem. A computer-aided vehicle embarkation system (CAVES)

is developed using a menu driven micro-computer program

designed to assist embarkation personnel to load vehicles on

board a ship. CAVES provides the Embarkation Officer the

flexibility and portability needed to make real time

decisions about vehicle load plans. -

' -- , 5 _- .r ,, ___', = , .,

-.-

4

p,

*o

.

* TABLE OF CONTENTS

I. INTRODUCTION-- 8

A. BACKGROUND------------------------------------- 8

B. THE NEED FOR COMPUTERIZATION----------------- 8

C. THE MICRO-COMPUTER---------------------------- 9

D. MARINE CORPS EMBARKATION--------------------- 10

E. VEHICLE STOWAGE PLANNING--------------------- 10

F. VEHICLE LOAD PROBLEM-------------------------- 11

ii. OBJECTIVES AND SCOPE------------------------------ 15

III. REVIEW OF EXISTING ALGORITHMS-------------------- 16

A. THE KNAPSACK PROBLEM-------------------------- 16

B. THE CUTTING STOCK PROBLEM-------------------- 18

C. THE TEMPLATE-LAYOUT PROBLEM------------------ 19

D. THE LOADING PROBLEM--------------------------- 21

IV. THE LOADING ALGORITHM----------------------------- 23

A. GENERAL DESCRIPTION--------------------------- 23

B. NO-A'ATION AND DESCRIPTION OF MATRICES--------- 27

C. STATEMENT OF THE ALGORITHM------------------- 29

D. SAMPLE PROBLEM-------------------------------- 31

V. SUMMARY--- 40

A. CONCLUSIONS------------------------------------ 40

B. RECOMMENDATIONS------------------------------- 41

APPENDIX A CAVES-- 42

APPENDIX B VEHICLE GRAPHICS---------------------------- 47

APPENDIX C COMPUTER PROGRAM---------------------------- 49

5

C ., .. r.. j- . - 7-- c- - r --- - - . . -, . - *- , - -. .. --. - -. -. -

A. PROGRAM EMBARK --------------------------- 49

B. OVERLAY IOVEH ---------------------------- 52

C. -OVERLAY VEHICLE -------------------------- 62

D. OVERLAY VHELP --------------------------- 70

LIST OF REFERENCES ---------------------------------- 71

BIBLIOGRAPHY -- 73

INITIAL DISTRIBUTION LIST --------------------------- 74

.- 6

- 4. -

LIST OF FIGURES

1. Cutting Patterns------------------------------- 2

2. Possible Origins for Placing Vehicles

on the Deck------------------------------------ 25

3. Example Problem-------------------------------- 39

4. Vehicle Graphics------------------------------- 48

7

I. INTRODUCTION

A. BACKGROUND

While embarkation techniques may have changed some over

the last 20 years, developing load diagrams still remains a

very tedious and manual chore for the Marine Corps

Embarkation Officer. Even with the updating from the

Mechanized Embarkation Data System (MEDS) to the Standard

Embarkation Management System (SEMS) in 1981, the

Embarkation Officer still has the task of manually creating

load diagrams using paper templates. The Air Force has

developed and uses a computer loading system for airplanes

called the Deployable Mobility Execution System (DMES); yet,

there is no computer loading system currently being used to

load Navy ships. In an attempt to fill this void a computer-

aided vehicle embarkation system (CAVES) was developed.

B. THE NEED FOR COMPUTERIZATION

Generating load diagrams is somewhat routine.

Nevertheless it draws on the experience and skill of the

Marine Corps Embarkation Officer to determine the load

pattern which yields the best utilization of a ships space,

taKing into account the tactical requirements. This task is

laborious and very time consuming. With the advanced

computer technology of today, the archaic use of paper

7-8
J.

-.,

templates can be updated by a computer system. Thus, using a

computer to automatically generate vehicle load diagrams has

considerable practical value to the United States Marine

Corps.

C. THE MICRO-COMPUTER

The flexibility and portability needed by the Marine

Corps Embarkation Officer to make real time decisions about

vehicle load plans emphasizes the need for computerization.

The micro-computer, with its small physical dimensions and

relatively low cost when compared to a mainframe computer,

can tackle problems of considerable complexity. It has

several advantages over the mainframe machines. The two main

advantages are the portability of the micro-computer and the

interaction capable between the user and the ccmputar

[Ref. 1). What the micro-computer makes possible is the

combination of the speed of a computer together with the

skill and experience of the embarkation personnel, in an

interactive manner. With the Marine Corps constant

deployment on Navy ships around the world, the micro-

computer can be there ready to aid embarkation personnel in

developing load plans as well as serving as a database

management tool, for loading the various vehicles, cargo,

and personnel.

9

* * . - . .

D. MARINE CORPS EMBARKATION

Marine Corps embarkation is defined to be the loading of

Marines with their supplies and equipment onto ships and/or

aircraft. Marine Corps embarkation includes the loading of

pallets, personnel, vehicles, and other equipment; however

the loading of vehicles is the only topic discussed in this

thesis. While the loading of vehicles onto Navy ships is the

primary concern, loading can be divided into two types:

administrative and \.mbat. Administrative loading

emphasizes maximum use of cargo space without regard for

tactical considerations. It presumes that the initial

destination is a marshalling area where troops and cargo may

be discharged free of enemy interdiction. Equipment and

supplies must be unloaded before they can be used. Combat

loading is the stowage of a vessel so that the equipment

needed for a landing attack may be rapidly unloaded in a

needed priority. Primary emphasis is placed on tactical

considerations rather than the economic use of the ship's

space. Marines seldom load ships administratively;

therefore, combat loading is the primary consideration of

the load algorithm. [Ref. 21

E. VEHICLE STOWAGE PLANNING

Size, shape, weight, unload priority, and serial

grouping are a few of the many details that are considered

when planning the stowage of vehicles. Vehicles and cargo

10

.. - -. .

.

.I -d - a I| -

are often loaded in the same compartment; however, vehicles

normally have a higher priority for unloading. Therefore,

space available for cargo cannot be accurately determined

until the vehicle stowage planning is complete. The

following specific rules apply when planning vehicle

stowage:

1. Each vehicle occupies deck space of specific size
and shape.

2. Overhead hatches must be large enough and/or ramp
clearances must be sufficient to allow passage of
vehicles.

3. If unloading is accomplished by boom/crane or by
helicopter, these apparatuses must have sufficient
capacity to lift fully loaded vehicles.

4. Each vehicle is positioned on the ship in such a
manner as to ensure that it can be unloaded in
accordance with its assigned priority number.

5. A marriage, a towed vehicle and its prime mover, must
be stowed in the same compartment to ensure that they
are not separated during debarkation.

6. Stowage must be planned so that the vehicles can be
moved to the ramp, access doors or the space under the

overhead hatch square without excessive maneuvering.

7. No vehicle may be stowed athwartships. Vehicles are
stowed fore and aft to preclude loosening of lashing
caused by the side-to-side movement (roll) of the
ship.

8. A broken stowage factor of .8 is applied to the deck
loading area to determine the available vehicle
stowage area.

F. VEHICLE LOAD PROBLEM

Given n number of vehicles of different sizes, shapes,

and weights, the vehicle load problem loads these vehicles

' .1

°'" Ii.

#

onto a ship's deck of size L by W, accounting for the

length, width, height, weight, priority number and marriage

constraints of the vehicles. The objective is to maximize

the area covered on the deck by the vehicles being loaded.

In addition to the above constraints there are a number of

independent variables that are considered when loading

vehicles on board a ship. The variables of importance are as

follows:

1. Clearance between vehicles.

2. Rules for loading vehicles with trailers or towed
loads.

3. Rules for loading non-rectangular shaped objects.

Each constraint will be discussed in turn.

Even though the vehicle loading problem is thought of as

only a two-dimensional problem (no stacking involved), the

height of the vehicle plays a key role. Obviously, if the

vehicle exceeds the height restrictions it will not fit in

the alloted deck space. Though the weight is listed as a

constraint and is a required input for CAVES, the weight

distribution of the vehicles loaded on board the ship was

not addressed in this thesis. Except for the LKA, the

vehicle's weight distribution should not present any loading

problems for Navy amphibious ships.

Given that a vehicle meets the height requirements, the

primary consideration used in the loading of vehicles is the

priority number. The priority number represents the order in

12

which the vehicles will go ashore. The ordering process is

such that the lowest numbered vehicle has the highest

priority and must be landed ashore first. When the

Embarkation Officer is placing vehicle templates on the deck

diagram to configure the load, the highest priority vehicle

is placed first. This is continued in numerical order with

the rest of the vehicle templates. The loading algorithm in

CAVES loads the ship's deck in exactly this manner. This

process which is described in Chapter IV is best used for

well deck operative ships (e.g. LPD, LSD). When the ship is

being physically loaded, the first-in last-out concept is

utilized. Therefore, since the vehicle with priority number

one is to be landed ashore first, it is physically loaded

last tin board the ship.

A vehicle marriage, will always have sequential priority

numbers. Therefore, it is desirable to be able to load the

towed vehicle immediately behind its designated prime mover.

Sometimes, because of the space limitations, this is

impossible. Therefore, the towed vehicle must be loaded

beside its prime mover. Trailers or similiar towed vehicles

can be loaded in one of two ways:

1. Remain attached to the prime mover.

2. Disengage the lunette of the trailer and push the tow
bar beneath the prime mover to decrease total length.

The minimum clearance between vehicles is one foot. An

additional six inches is added to the length and width of

13

each vehicle to obtain the minimum clearance. The one foot

spacing between vehicles allows the vehicles to be tied-down

to the deck.

The loading of irregularly shaped towed loads such as

artillery pieces presents a special problem. Because of

their triangular shape they tend to occupy more space and

require more manuevering by hand. Since CAVES considers only

rectangularly shaped vehicles, the artillery pieces could be

loaded in pairs making a roughly rectangular shape.

14

...............................

7-7- 1- T. F.. ' - 7 - . F ai--1r -T W ,_W.

II. OBJECTIVES AND SCOPE

The objectives of this study were to review the existing

loading algorithms and develop a user-friendly computer

program to help embarkation personnel load vehicles on board

a ship. CAVES was designed as a menu driven computer program

to make it as simple as possible to utilize. The intent was

to design a computer program that a user with little or no

embarkation experience could use. The system was developed

specifically for use on a micro-computer and presupposes

that the user has some knowledge of operating a micro-

computer and that all necessary data for the vehicles to be

loaded are available. It is assumed that all vehicles are

rectangular, no irregular shapes are used, and the ship's

deck where the vehicles are to be loaded is rectangular. It

is also assumed that the area of the ship's deck where the

vehicles are being loaded is clear of any obstacles or non-

stowable areas.

Neither the weight distribution nor the center of

gravity restrictions are addressed by the load algorithm.

However, these restrictions could be included by modif,'ing

the load algorithm.

15.,

'~.-'...'...'-... '..-".. ..-..... '..-...'-.-.'"v-vv.."-"."

.,

III. REVIEW OF EXISTING ALGORITHMS

The interest in two-dimensional allocation type problems

has grown over the past thirty years. This is in part due to

the important role these problems play in computer-aided and

computer-automated design applications, particularly those

related to sheet metal fabrication, garment making, template

layout and circuit layout [Ref. 31. With the appearance of

"- large mainframe computers and the development of computer

oriented optimization techniques such as linear and dynamic

programming, the interest has continued to grow. In this

chapter a survey of some of the available literature

concerning methods used to solve these two-dimensional

problems is presented. First of interest is the work of

Gilmore and Gomory [Ref. 41 and their developement of

knapsack functions. Next, two related problems, the Cutting

Stock and Template-Layout problems, are introduced. Finally

the Loading problem is presented.

A. THE KNAPSACK PROBLEM

The problem of cutting a one-dimensional object (e.g. a

length of some material) into smaller pieces - each piece

having a given length and value - in such a way as to

maximize the total value of pieces cut is the "knapsack

4" 16

: • ~...- ".. ". ... ".. "...... '....".-... "'.

problem". Mathematically the knapsack function F(x) is

defined for lengths 1 ,...,l of given values II ,...,II by
1 m 1 m

the equation:

F(x) = max{Z II + ... + Z II ; 1 Z + ... + 1 Z < x}
1 1 m m II mm

(Z > 0, Z integer)
i i

where II and I are given constants, i = l,...m. Here the
i i

problem is one of fitting lengths 1 into a box of length x.
i

The knapsack problem has been examined by a number of

authors, and methods for its solution have been proposed

using either dynamic programming (Ref. 5] or tree search

techniques [Ref. 61. The attention here is motivated by many

practical problems that can be formulated as knapsack

problems, one typical case being the vehicle loading problem

[Ref. 71. Given rectangles of dimensions (I ,w), i =

ii
l,...,m that have nonnegative values II ,...,II associated

1 m
with them a two-dimensional knapsack function G is defined

as follows:

G(x,y) = max{II Z + ... + II Z }
11 mm

where z ,...,z are nonnegative integers such that there

1 m
exists a way of dividing a large rectangle (x,y) into Z

i
rectangles (1 ,w), i = l,...m. [Ref. 4, pp. 1045-10461

:i i

a. 17

°oSo%

B. THE CUTTING STOCK PROBLEM

The two-dimensional cutting stock problem requires

cutting a large rectangle into smaller rectangular pieces of

specified sizes and values so as to minimize the total

waste. Hahn [Ref. 81 investigates the cutting stock problem

in the two-dimensional trim problem which has arisen in

industries that produce glass, veneer, film, etc. To

minimize waste, manufacturers use some material with

defective areas. The manufacturers get orders for a certain

number of different sizes to be cut out of the available

sheets. The problem is now to find the combination of sizes

to be cut out of the available sheets which minimizes the

waste. The dynamic programming approach used in this

optimization, requires that a value be attached to every

size. Whenever a size is fitted in, its value is added to

the total value of the sizes already used for that sheet.

The optimal combination will be the one with the greatest

possible value.

Christofides and Whitlock [Ref. 9] use a tree-search

algorithm for the two-dimensional cutting problem in which

there is a constraint on the maximum number of each type of

piece that is to be produced. Their algorithm limits the

size of the tree search by imposing necessary conditions for

the cutting pattern to be optimal. They use a dynamic

programming procedure for the solution of the unconstrained

problem.

18

-_ .:.:. . ~= ,,.... =. .-. ,:-. .. . : . , -.- ..-.-.-- ,. -- .. ,- , . ..

|--

The above algorithm is also constrained to consider only

cutting patterns made by guillotine type cuts. A guillotine

type cut is one in which all cuts go from one edge of the

rectangle to be cut, to the opposite edge. Figure 2(a) shows

a possible cutting pattern using only guillotine cuts while

Figure 2(b) shows a cutting pattern that could not be

produced using guillotine cuts.

Steudel [Ref. 101 uses a heuristic algorithm employing

dynamic programming to solve the two-dimensional cutting

stock problem in which all the small rectangles are of the

same dimensions and nonguillotine cuts are allowed.

C. THE TEMPLATE-LAYOUT PROBLEM

The template-layout problem is characterized by the

requirement for cutting two-dimensional shapes or rectangles
"o

out of large sheets in an optimum manner without making an

exhaustive search of all possible arrangements [Ref. 11).

This problem is closely related though distinct from, the

cutting stock problem. In the template-layout problem the

objective is to obtain as many pieces as possible from a

fixed number of sheets; where as in the cutting stock

problem the objective is to satisfy a fixed demand with a

minimum number of sheets.

In 1970 Haims and Freeman [REf. 121 developed an

algorithm for solving the template-layout problem. A dynamic

programming approach was applied, assuming that there was an
1

~19

Figure lb. Cutting pattern infeasiblt wt
guillotine cuts.

Figure lb . Cutting Pe ttinensibewt

20

unlimited supply of each type of rectangle and that the

orientation of the rectangles may be either fixed or left

unspecified.

D. THE LOADING PROBLEM

There are several types of loading problems. Eilon and

Christofides (Ref. 13) discuss one type of loading problem,

which is akin to the knapsack problem. This particular type

of loading problem is defined as the allocation of given

items with known magnitude to boxes with constrained

capacity, so as to minimize the number of boxes used. They

present two methods for solving this problem:

1. The Zero-One programming method.

2. A heuristic algorithm.

Another type of loading problem is the pallet loading

problem. The pallet loading problem can be viewed as a

special case of the two-dimensional cutting stock problem

where all the small rectangles are of identical dimensions.

The problem consists of partitioning a rectangular pallet of

length L by W into smaller rectangular areas of length

1 and width w so as to determine a loading pattern which

minimizes the amount of unused pallet area. Another version

of the pallet loading priblem as viewed by Hodgson [Ref. 14]

is the problem of loading a rectangular pallet of size L

by W, drawing from a set of n rectangular boxes. The

objective here is to maximize the area covered on the pallet

21

v:-- - -' '. - . -. .- --.-- .- -. " . • . .'..." '

by the boxes loaded. Hodgson's approach was to use a

combination of dynamic programming and heuristics. His

procedure is in fact a generalization and extension of the

Template-Layout problem by Haims and Freeman.

Another version of the loading problem analogous to

Hodgson's version is the vehicle loading problem. As

evidenced by the above review, the vehicle loading problem

is related to the knapsack, cutting stock, and template-

layout problems. The vehicle loading algorithm used in this

thesis is discussed in the next chapter.

22

.........................

IV. THE LOADING ALGORITHM

A. GENERAL DESCRIPTION

The main function of CAVES is to load vehicles on a

ship's deck, minimizing the area used. The second option of

CAVES' main menu allows the user to load a ship's deck of

specified length, width, and height (See Appendix A for menu

option details). CAVES uses a hueristic loading routine to

load the vehicles.

The loading algorithm used was incorporated from a

thesis written by Nelson [Ref. 15]. The algorithm loads one

vehicle at a time by inspecting each of the n vehicles in

the vehicle file. Vehicle with priority number one is

inspected first, vehicle with priority number two is

inspected second, and so forth until all n vehicles are

inspected. If the vehicle under inspection can be loaded

without violation of one of the constraints discussed in

section IF above, the vehicle is loaded. If the current

vehicle does violate one of the constraints, it is passed

over and the next vehicle in the sequence is inspected and

loaded if possible. If none of the vehicles waiting to be

loaded can be loaded, the loading process is ended.

The loading procedure requires a decision to be made as

to where an additional vehicle may be placed. These

locations are defined as "possible" origins. They are

23

.. o - o

. *~ " ~ .* " " °*""" "' "• ' S

constrained by the algorithm to be either the origin of the

ship's deck or one of two positions relative to each of the

vehicles previously loaded. The first vehicle being loaded

is loaded at the bottom left corner of the deck and

thereafter the possible origins are either to the right of

or behind the previously loaded vehicle, as shown in Figure

2. The coordinate axis may be thought of in relating the x

and y positions. The x axis is the width while the y axis is

the length. The dimensions of the vehicle being added are

denoted by VEHL, VEHW, and VEHH corresponding to its length,

width and height respectively. These positions are selected

as possible origins because they limit the possible

positions of the next vehicle to a finite, manageable number

of locations. Finally, of all the possible origins, a

subset of "permissible" origins is defined. This subset of

"permissible" origins is determined by deleting from all

possible origins those which have already been utilized by

loaded vehicles. [Ref. 161

The order of inspection of those permissible origins is:

1. The x-position ordered from the first vehicle loaded
to the last vehicle loaded.

2. The y-position ordered from the first to the last

vehicle loaded.

This order of inspection tends to load the deck in rows,

always starting from the deck's origin (bottom left corner).

24

FORWARD

SHIP'S DECK

y
Direction

(Vehicle)
(Length)

Deck AFT
Origin
(0,0) -

x Direction -
(Vehicle Width)

Figure 2. Possible Origins for Placing Vehicles
on the Deck.

25

To determine if a vehicle may be loaded at a given

permissible origin, it is necessary to maintain a record of

all previously loaded vehicles and their relative positions

on the deck. This is accomplished by maintaining a record of

the previously loaded vehicles' dimensions in the x and y

directions. Thus, feasiblilty is determined by considering

the vehicle at a particular permissible origin and

determining if the vehicle is wholly contained within the

space of the deck and if the vehicle does not intersect any

previously loaded vehicle.

A local minimum is obtained by attempting to move each

vehicle, as it is loaded, toward the origin of the deck.

This is accomplished by determining if the vehicle may be

moved along one of the x or y directions toward the deck's

origin. Movement is only permitted if the vehicle does not

intersect any previously loaded vehicle. The vehicle is

moved in one direction at a time and movement is continued

in an iterative fashion until no further movement toward the

origin is possible. [Ref. 171

The next section will briefly describe the notation used

in the loading algorithm and following that, the algorithm

is stated. After the statement of the algorithm, a brief

sample problem is solved for illustrative purposes.

26

•.....-.......................-

B. NOTATION AND DESCRIPTION OF MATRICES

Before stepping through and describing the loading

algorithm, notation is briefly discussed and the matrices

used in the algorithm are defined.

There are n vehicles to be loaded and their

characteristics are contained in matrix D. Matrix D is

defined as an (nx6) matrix of vehicles that are to be loaded

as follows:

PRI# VEHE. VEHW VEHH VSQFT WGT1I 1L 1 1 1 T1

PRI# VEHL n VEHW VEHH VSQFT WGT

n n n n n n

where PRI# is the priority number of the vehicle.

VEHL is the length of the vehicle.

VEHW is the width of the vehicle.

VEHH is the height of the vehicle.

VSQFT is the square feet occupied by the vehicle.

WGT is the weight of the vehicle.

Matrix D is used in the algorithm as a device to

maintain a record of the vehicles yet to be loaded.

To make a determination of whether a vehicle will fit at

a given origin, Matrix R is established and updated with

each vehicle that is loaded onto the deck. Matrix R is

defined as follows:

27

..................... *!*

. X Y (X +VEHWn) (Y +VEHLn) VEHH VSQFT WGT

NX Y (X +VEHW)(Y +VEHL)VEHH VSQFT WGT n

N is the priority number of VEH whose length, widthJ J
and height are VEHL, VEHW, and VEHH respectively, where

I j S n, and whose origin is located at coordinates X ,Y

Thus, the first column of matrix R identifies the

priority number of the vehicle, columns two and three

identify the vehicle's location on the deck and columns four

and five describe the area occupied by the vehicle while

column six is the vehicle height. Column seven is somewhat

redundant by listing the squarv footage of the vehicle and

column eight lists the vehicle's weight.

Matrix R allows the determination of fit to be made

through a series of very fast logic checks. These logic

checks are discussed in the next section.

To facilitate the selection of the next origin where the

algorithm attempts to load the current vehicle, a logical

matrix of possible and permissible origins is established.

By an extremely rapid scan of this matrix, defined as Matrix

B, the next origin is quickly determined. Matrix B is an

(nx2) matrix as follows:

28

i- .'....-.-...'...-.-.-.~~.o..>.- . "..'. ""........'-" ."---..-".'-.
". ' '' '' " '' . .' .-°-. ..-. .-.'° " """- -"- ." - *.*.*,' * . .. ','*",".." . . ." .

XORG YORG

XORG YORG
n n

Each row of matrix B corresponds to a row in matrix R.

The two elements in each row of matrix B correspond to the

x-direction and y-direction possible origins associated with

each vehicle as described by matrix R. Of all the possible

origins, the permissible origins are defined by setting a

true value to each element in matrix B which corresponds to

the possible origin which is also a permissible origin. It

is precisely these permissible origins where attempts are

made to load additional vehicles.

C. STATEMENT OF THE ALGORITHM

To lcad n vehicles onto a ship's deck the following

steps are used:

1. Input the length, width and overhead height
restriction of the deck.

2. Check to see that all vehicles' heights are within the
height limitations.

3. Establish matrix B.

4. Load the first vehicle. Augment matrices R and B with
an additional row to represent this vehicle. Adjust
matrix B if necessary, by removing an origin from the
set of permissible origins.

29

+'I

5. Select the next vehicle in matrix D. If no more
vehicles are left, go to step 10.

6. Select the next permissible origin. The next
permissible origin corresponds to the next true
element in column 1 of matrix B (x-position), followed
by the next true element in the second column (y-
position). Call the selected origin (ORW,ORL). If all
origins have been tried go to step 5.

7a. Determine if the vehicle will fit at this origin.

This is determined by the following logic checks:

For the x direction,

(R(j,4) + VEHW) > DECKW or (R(j,3) + VEHL) > DECKL

For the y direction,

(R(j,5) + VEHL) > DECKL or (R(j,2) + VEHW) > DECKW

where 1 < j < n. A true condition indicates that the
vehicle wll -not fit at this origin.

7b. Improve the density of loading if possible. Inspect,
one at a time, each possible direction of improvement
(x,y). Each direction of improvement is found by
inspecting the origin (ORW,ORL) under question and
each row of matrix R. To determine if improvement is
possible in the x direction, the following logic
check is made on each row of matrix R:

R(j,2) > (ORW + VEHW) or R(j,3) > (ORL + VEHL) or

R(j,6) < ORL.

A true condition indicates that improvement is not

possible at this row in matrix R. A false condition

indicates that improvement is possible. The magnitude of

improvement is ORW - R(j,5), and is denoted in the algorithm

as tne variable slack (Ref. 18]. The improvement found over

all rows of matrix R is:

min(slack ,...,slack ,ORW).

1 n

30

* -:: K K K:..o''~--.~*.*

To determine improvement in the y direction the logic

check is:

R(j,3) > (ORL + VEHL) or R(j,2) > (ORW + VEHW) or

R(j,5) < ORW.

The magnitude of improvement when the logic check is

false is ORL - R(j,6).

With each improvement, the origin (ORW,ORL) of the

vehicle being loaded is adjusted. The search for improvement

is continued until no improvement can be found in any

direction.

8. Load the vehicle and adjust matrices R and B with an
additional row. Adjust matrix B to preclude any origin
that may not be used.

9. Go to 5.

10. All the vehicles have been either loaded or have been
attempted to be loaded; terminate the algorithm.

When the algorithm terminates, it does not in general

yield the true optimal solution. The vehicle loading problem

falls in the category of problems called NP-Hard [Ref. 14

p.176). Consequently, a truly optimal algorithm is not

likely to be found.

D. SAMPLE PROBLEM

In order to illustrate the load algorithm, the

following example is presented. There are five vehicles to

be loaded as shown in matrix D.

31

1 135 64 54 60 2500

2 112 61 43 48 610

D= 3 219 80 74 122 4648

4 118 50 50 41 1000

5 227 84 91 133 7300

Step 1. In this example the length, width and overhead

height limitations of the ship's deck are 400, 200 and 100

respectively. The units are in inches, except for the

vehicle area which is in square feet and the weight is in

pounds.

Step 2. Check to see that all the vehicles' heights in

matrix D are less than the overhead height limitation.

Step 3. Establish the B matrix of origins.

Step 4. Load the first vehicle in matrix D. This is the

vehicle with priority # I and dimension of 135x64x54.

Augment the R matrix to include this vehicle as follows:

R = (1 0 0 64 135 54 60 2500).

Augment the B matrix and show permissible origins by setting

the applicable element to true and remove if necessary any

origins from the permissible origins. Thus

B = (T T).

32

"%/ ; /._'- '-, , -,- '- - - ".'Z-' -'. , Z . --.. -'C .. - -- . ., . . . ' --. ' ' . - -- " -

Step 5. Select the next vehicle in the D matrix. This

is the vehicle with priority # 2 and dimensions 112x61x43.

Step 6. Select the next permissible origin. Scan matrix

B column by column always starting at the top of each column

and working down. In this example, element B(1,I) is the

next permissible origin. This element translates into an

origin of (R(I,4),R(l,3)) or (64,0). Denote this as the

current (ORW,ORL).

Step 7A. Determine if the vehicle will fit at this

origin. This is accomplished by the following logic check of

row one of matrix R:

(R(1,4) + VEHW) > DECKW or R(1,3) + VEHL) > DECKL

This equates to:

(64 + 61) > 200 or (0 + 135) > 400

which is obviously false becuase 125 is not greater than 200

and 135 is not greater than 400. Therefore, the vehicle will

fit at this origin.

Step 7B. Since this is only the second vehicle

improving the density is not possible.

Step 8. Load the vehicle and augment the matrices R and

B as follows:

R = 1 0 0 64 135 54 60 250

("2 64 0 125 112 43 48 610

33

.............o.".

a. .

Step 5. The next vehicle in matrix D is priority # 3

whose dimensions are 219x80x74.

Step 6. The next permissible origin of matrix B is

B(2,1). This element translates into an origin of

(R(2,4),R(2,3)) or (125,0). Set ORW - 125 and ORL = 0.

Step 7A. Determine if the vehicle will fit at this

origin. The following logic check is made:

(125 + 80) > 200 or (0 + 219) > 400

Since the logic check is true for the x direction, the

vehicle will not fit at this origin.

Step 6. Select the next permissible origin. Since this

vehicle would not fit in the x direction, the next

permissible origin is related to the y direction and is

B(l,2) which translates to R(1,2),R(l,5) or (0,135).

Step 7A. Determine if the vehicle will fit at this

origin. The following logic check is made:

(R(1,5) + VEHL) > DECKL or (R(1,2) + VEHW) > DECKW

which equates to:

(135 + 219) > 400 or (0 + 80) > 200

34

..............................

which is false therefore, the vehicle will fit at this

origin.

Step 7B. The density cannot be improved.

Step 8. Load the vehicle and augment the matrices R and

B as follows:

/1 0 0 64 135 54 60 2500

R= 2 64 0 125 112 43 48 610

3 0 135 80 354 74 122 4648

F F

B T F

"-T F)

In the augmentation of the B matrix, B(2,2) was set to false

because if a vehicle were to be loaded at that origin it

would intersect the vehicle with priority # 3. B(3,2) was

also set to false because the distance from the third

vehicle loaded to the ship's aft loading boundry is less

than the length of the shortest vehicle, 46 as compared to

112.

Step 5. The next vehicle in matrix D is priority # 4

with dimension ll8x50x50.

Step 6. Since no vehicle was loaded at B(2,1) or origin

(125,0), select this as the next permissible origin.

Step 7. This vehicle will fit and improvement is not

possible.

35

.* . * .* * .*

Step 8. Load the vehicle and adjust R and B matrices as

follows:

1 0 0 64 135 54 60 2500

R2 64 0 125 112 43 48 610

3 0 135 80 354 74 122 4648

4 125 0 175 118 50 41 1000

F F

B= F F

T F

F T

Step 5. The next and last vehicle in matrix D is

priority # 5 with dimension 227x84x91.

Step 6. Because the distance from the fourth vehicle

loaded to the ship's right bulkhead is less than the width

of the smallest vehicle, 25 as compared to 43, B(4,1) was

set to false. B(3,1) is the next permissible origin. This

equates to (R(3,4),R(3,3) or (80,135).

Step 7. The vehicle will fit. Check to see if

improvement is possible. For illustration purposes the y

direction will be shown. To determine if improvement is

possible in the y direction, the following logic check is

made:

36

b *.* .

R(4,3) > (ORL + VEHL) or R(4,2) > (ORW + VEHW) or

R(4,4) < ORW

which equates to:

0 > (135 + 227) or 125 > (80 + 84) or 175 < 80

Since this logic check is false, improvement in the y

direction is possible. The magnitude of improvement is ORL -

R(4,6) or 135 - 118 which equals 17. No improvement is

possible in the x direction therefore, the origin of the

vehicle is now ORW = 80, ORL - 117.

Step 8. Load the vehicle and augment the R and B

matrices as follows:

1 0 0 64 135 54 60 2500

2 64 0 125 112 43 48 610

R = 3 0 135 80 354 74 122 4648

4 125 0 175 118 50 41 1000

5 80 118 164 345 91 133 7300

F F

F F

BF F

F F

F F

37

-. .* *.*,.- --

Pr

Step 10. Matrix R now shows the ship's deck as it is

loaded; terminate the algorithm.

CAVES has produced a results matrix of where the

vehicles should be loaded. Figure 3 shows the deck diagram

of where each vehicle would be placed. Using this deck

diagram the Embarkation Officer would then physically load

the ship in reverse order using the first-in last-out

concept.

38

". -. ,,. -- +.-' , ,a il ,.1

Ship's Deck

Forward

400 - - - - - - - - - - - - - - -

354 ______ _

VEHICLE

PRI # 3 VEHICLE

PRI # 5

135

VEHICLE
VEHICLE

PRI #I VEH
PRI# 2

PRI# 4

DECK
ORIGIN
(010) -- - - - - - - - - - - - - - -

64 125 1.75 200

Ship's Deck Aft

Figure 3. Example Problem

39

V. SUMMARY

A review of the available literature on loading

algorithms was conducted. A heuristic algorithm was

incorporated from Nelson and modified for use in the loading

algorithm for CAVES. Intended primarily as an aid for

Embarkation personnel, CAVES accomplished its objective by

simulating the tactical loading of vehicles on a rectangular

deck.

A. CONCLUSIONS

CAVES is an adequate start at trying to computerize

vehicle loading. Much remains to be done before a fully

computerized loading system can become a reality. The

"Expert" loading system will need to consider not only the

vehicles, but pallets, non-stowable areas on the deck, and

non-rectangular loading areas. While vehicle graphics are

presented in Appendix B, a graphical system to produce a

vehicle load diagram showing the placement of the loaded

vehicles is needed to make CAVES a more useable and

effective embarkation system.

b4

B. RECOMMENDATIONS

1. That research and development of a fully automated
computer embarkation system for the Navy and the Marine
Corps be continued.

2. That CAVES be modified to include the following:

a) obstacles or non-stowable areas in the load
algorithm,

b) use of a graphical system to produce load
diagrams showing the placement of the loaded
vehicles.

41

...

.........................

APPENDIX A

CAVES

A. STRUCTURE OF CAVES

CAVES was developed on and designed to run on a micro-

computer. The particular machine chosen was the IBM Personal

Computer configured with two DS/DD disk drives and 372k

bytes of RAM memory. Written in PASCAL MT+, CAVES is

comprised of four overlays: 1. EMBARK; 2. IOVEH; 3. VEHICLE;

and 4. VHELP. EMBARK is the main module or root overlay for

the three other overlays. The menu (option list) for EMBARK

contains four options:

1. CREATE, UPDATE OR DISPLAY A FILE - sends the user to

the overlay IOVEH in order to create, update or display the

vehicle file.

2. LOAD SHIP - sends the user to the overlay VEHICLE in

order to use the load algorithm.

3. INSTRUCTIONS FOR USE OF CAVES - sends the user to

the overlay VHELP.

4. QUIT/EXIT SYSTEM - terminates the CAVES program.

The IOVEH overlay is the module responsible for the key-

board input of files and printer output of files. IOVEH acts

as the database manager for CAVES. It allows the user to

create a new vehicle file or update the existing vehicle

file. It also allows the user to display the current file,

including the results of the loading algorithm. Within the

42

"I.- .. ° ,. .° . . °- ° - , , . , °. ..- ,-.-i, ° . - *.. .. . o . .

.." ... " . " ..." .. .° ... " . " -" -. " L
:

. " . - o _. : -

IOVEH overlay, procedures Writeveh, and Readveh are the work

horses. The Writeveh procedure stores the vehicle data and

in conjunction with the Readveh procedure allows the user to

edit the vehicle file. Procedure Fileio is the editing

procedure which calls the Procedures Edit and Display. The

procedure Edit displays menus, opens up the files, and calls

the above mentioned procedures to edit existing files. The

procedure Display gives a screen display of the files, while

Procedure Hardcopy is used to printout the vehicle and

result files. The menu (option list) for IOVEH contains

three options:

1) CREATE OR EDIT VEHICLE FILE- puts the user

in the file editor mode and allows the user to select one of

three options:

a) CREATE NEW VEHICLE FILE

b) EDIT OLD VEHICLE FILE

e) EXIT

2) SCREEN DISPLAY OR HARDCOPY OUTPUT - puts the user in

the file display mode and allows the user to select one of

the following five options:

a) SCREEN DISPLAY OF VEHICLE FILE

b) SCREEN DISPLAY OF RESULTS FILE

e) HARDCOPY OUTPUT OF VEHICLE FILE

f) HARDCOPY OUTPUT OF RESULTS FILE

g) EXIT

43

.:

3) EXIT - ends the input/output session and exits to

the main program.

The VEHICLE overlay prompts the user for the length,

width and overhead height restriction of the ship's deck

where the vehicles are to be loaded. It also prompts the

user for the number of vehicles from the vehicle file that

are to be loaded. An end of loading message appears on the

screen when the loading algorithm is finished.

The overlay VHELP is a basic guide for the first time

user of CAVES.

B. DESCRIPTION OF CRT AND KEYBOARD UTILITIES

Incorporated throughout CAVES is an input filtering

system. which allows the user to type in only the proper

input. For example, to select an option from the main

program menu one of four inputs is required, either A,B,C or

E. If anything else is typed in, the bell will sound

indicating improper input.

The utility routines for the filtering system and cursor

control are found in the Module CRTLIB. There are over

twenty different utility routines that are found in CRTLIB

but only ten are used frequently. They are as follows:

1) Procedure Crtinit - To use the utilities in Module

CRTLIB the procedure Crtinit must be called at the beginning

of the main program.

44

Crtinit initializes the arrays CRTINFO and PREFIXED so

that their values can be used by the utilities in Module

CRTLIB.

2) Procedure Gotoxy(X,Y:INTEGER) - Places the cursor at

vertical line number X and horizontal line number Y.

3) Procedure Promptat(Y:INTEGER;S:STRING) - Places the

prompt after the string S on line number Y.

4) Procedure Clearscreen - Clears the screen and places

the prompt at the (0,0) position.

5) Procedure Clearit(I:INTEGER) - Clears the screen of

everything from line I to the bottom of the screen.

6) Function Getchar(OKSET:SETCHAR): CHAR; - Performs

the task of reading a character from the keyboard. The input

to Getchar is a variable set of characters, called OKSET in

Getchar's declaration. When a character is inputted from the

keyboard, Getchar verifies that it is in OKSET. If it is,

this character becomes the value of the Function Getchar and

is used in the procedure calling Getchar; if it is not, a

beep is sounded and the process is repeated until a

character in OKSET is entered.

7) Function Yes: BOOLEAN - Uses Getchar to check if the

input is a 'Y' and if so sets its value to true.

8) Procedure Whead(S:STRING) - Whead will center, print

and underline a string S. It is primarily used for headings.

9) Procedure Intread(VAR K:INTEGER) - Intread is used

to read an integer between -32768 and +32767. The characters

45

•* *. .* •-.-°

are filtered, put into a string, checked for the proper

range, and then converted to an integer.

10) Procedure Spacebar - Used as a manual stopping

mechanism. The message "Press Spacebar" is displayed on the

screen to the user and then Getchar is called to insure the

spacebar input.

It is the use of the above routines within CAVES that

makes CAVES a user friendly computer program.

46

-a \ % * . * * . .

°a ..
.*

. . .

APPENDIX B

VEHICLE GRAPHICS

To enhance and make CAVES a more useable product, a set

of vehicle graghics were created. As shown in Figure 4 each

vehicle is a re-creation of actual templates used by

embarkation personnel to load ships. While not actually

incorporated into CAVES, the vehicle graphics are a needed

aid in helping embarkation personnel load ships. Used in

conjuction with a graphical loading system and CAVES, the

vehicle graphics would "print" a picture of the results from

the loading algorithm.

47

,.

L ------J
" "III U 3

- I I

L.. 5 I L-----J
• [. .. -. .. I I \

", / Jeep
Trailer

,i~~4 '\

Truck
. .. Trailer

1 i I

Tank
I 135 -

I . ..I

2 2Jeep" I ' I I I I
I T Ii '" !,I I
14C : II I I I+ I

(Ii '' I

Truck

MuL e

Fork Lift

Figure 4. Vehicle Graphics

48

.. -..-'..-.... -..- . *..;'.-'.. .-..-..,-.:,. :-. * :f-

APPENDIX C

COMPUTER PROGRAM

A. PROGRAM EMBARK

PROGRAM EMBARK;

CONST BELL 07;
RTN =13;

BSP =8;

MAXCOLR = 8;
MAXCOLD - 6;

TYPE
STRING16 = STRING[16];
CRTCOMMAND = (ERASEOS,ERASEOL,UP,DOWN,RIGHT,LEFT,

LEADIN ,TIME,FCOLORBCOLOR,REVIDON,
REVIDOFF,INTENON,INTENOFF,BLINKON,
BLINKOFF);

SETOFCHAR - SET OF CHAR;
PTR = %NTEGER;
CPMOPERATION = (COLDBOOT,WARMBOOT,CONSTAT,CONIN,

CONOUT,LIST, PUNOUT,RDRIN ,HOME,
SELDSK,SETTRKSETSEC, SETDMA,
DSKREAD,DSKWRITE);

STRING40 = STRING(401;
STRING60 - STRING[60];
NUMVEH =1..100;

MATCOLR l.8
MATCOLB l.2
MATCOLD l.6
MATRIXI =ARRAY(NUMVEH,MATCOLRI OF INTEGER;
MATRIX2 -ARRAY(NUMVEH,MATCOLBJ OF BOOLEAN;
MATRIX3 =ARRAY[NUMVEH,MATCOLDJ OF INTEGER;

VAR I,J,IONDIM,IOM,ROWDIMB: INTEGER;
ROBFLAG,AOIFLAG,IOBFLAG,QUITFLAG: BOOLEAN;
R: MATRIXi;
D: MATRIX3;
B: MATRIX2;
SELECT: CHAR;
OKSET: SETOFCHAR;
SBLASTX,SBLASTY: EXTERNAL INTEGER;

(EXTERNAL PROCEDURES AND FUNCTIONS *

EXTERNAL PROCEDURE CRTINIT;

49

EXTERNAL PROCEDURE CRT(C:CRTCOMMAND);

EXTERNAL PROCEDURE GOTOXY (X,Y: INTEGER);

EXTERNAL PROCEDURE PROMPTAT (Y: INTEGER;S:STRING);

EXTERNAL PROCEDURE CLEARSCREEN;

EXTERNAL PROCEDURE CLEARIT(I:INTEGER);

EXTERNAL FUNCTION GETCHAR (OKSET:SETOFCHAR): CHAR;

EXTERNAL FUNCTION YES: BOOLEAN;

EXTERNAL PROCEDURE GETSTRING(VAR S:STRING;MAXLEN: INTEGER);

EXTERNAL PROCEDURE WAIT;

EXTERNAL PROCEDURE WHEAD(S:STRING);

EXTERNAL PROCEDURE INTREAD(VAR K:INTEGER);

EXTERNAL PROCEDURE SPACEBAR;

EXTERNAL (3] PROCEDURE FILEIO;

EXTERNAL (191 PROCEDURE LOAD;

EXTERNAL (231 PROCEDURE HELP;

(END OF EXTERNAL DECLARATIONS *

BEGIN (* EMBARK *

CRTINIT;
QUITFLAG FALSE;
AOIFLAG :=FALSE;

*IOBFLAG FALSE;
ROBFLAG :=FALSE;
REPEAT

CL EA RSC REEN;
WHEAD(l COMPUTER AIDED VEHICLE EMBARKATION SYSTEM)
GOTOXY(0,3);
WRITELN(l ':5,'A ',ICREATE,UPDATE OR DISPLAY A FILE');
WRITELN;
WRITELN(' ':5,1B ','LOAD SHIP');
WRITELN;
WRITELN(' 1:5,1C ','INSTRUCTIONS FOR USE OF CAVES');

* WRITELN;
WRITELN(' 1:5,'Q ','QUIT/EXIT SYSTEM');
WRITELN;

50

WRITE(' 1:5,'SELECT ONE:)

SELECT :- GETCHAR(OKSET);
CLEARSCREEN;
IF SELECT =Q'THEN

BEGIN
PROMPTAT(10,'DO YOU REALLY WANT TO QUIT? TYPE Y FOR

YES, N FOR NO');
IF YES THEN QUITFLAG :=TRUE;
CLEAR SCREEN ;

END
ELSE
CASE SELECT OF

WA: FILEIO;
'B': LOAD;
'C': HELP;

END;
UNTIL QUITFLAG;

END. (*EMBARK *

51

B. OVERLAY IOVEH

MODULE OVERLAY3;

CONST BELL =07;

RTN -13;

BSP a8;

MAXCOLR - 8;
MAXCOLD = 6;

TYPE
STRING16 = STRING[161;
CRTCOMMAND - (ERASEOS,ERASEOL,UP,DOWN,RIGHT,LEFT,LEADIN,

TIME, FCOLOR,BCOLOR,REVIDON,REVIDOFF, INTENON,
INTENOFF, BLINKON,BLINKOFF);

SETOFCHAR - SET OF CHAR;
PTR ^ INTEGER;
CPMOPERATION = (COLDBOOT,WARMBOOT,CONSTAT,CONIN,CONOUT,

LIST, PUNOUT,RDRIN,HOME,SELDSK,SETTRK,
SETSEC,SETDMA, DSKREAD,DSKWRITE);

STRING40 - STRING(401;
STRING60 = STRING(601;

TYPE NUMVEH l ..100;
MATCOLR l.8
MATCOLB l.2
MATCOLD 1.6
MATRIXi ARRAY[NUMVEH,MATCOLR] OF INTEGER;
MATRIX2 =ARRAY(NUMVEH,MATCOLBJ OF BOOLEAN;
MATRIX3 = ARRAY[NUMVEH,MATCOLD] OF INTEGER;
VECTOR = ARRAY(MATCOLD] OF INTEGER;
VECTOR1 = ARRAY[MATCOLR] OF INTEGER;

VRIOM,IONDIM,ROWDIMB: EXTERNAL INTEGER;

ROBFLAG,AOIFLAG, IOBFLAG: EXTERNAL BOOLEAN;
R: EXTERNAL MATRIXi;
D: EXTERNAL MATRIX3;
F: FILE OF VECTOR;
Fl: FILE OF VECTORi;

(EXTERNAL PROCEDURES AND FUNCTIONS *

EXTERNAL PROCEDURE CRTINIT;

EXTERNAL PROCEDURE CRT(C:CRTCOMMAND);

EXTERNAL PROCEDURE GOTOXY(X,Y:INTEGER);

EXTERNAL PROCEDURE PROMPTAT(Y:INTEGER;S:STRING);

EXTERNAL PROCEDURE CLEARSCREEN;

52

EXTERNAL PROCEDURE CLEARIT(I:INTEGER);

EXTERNAL FUNCTION GETCHAR (OKSET:SETOFCHAR): CHAR;

EXTERNAL FUNCTION YES: BOOLEAN;

EXTERNAL PROCEDURE GETSTRING(VAR S:STRING;MAXLEN: INTEGER);

EXTERNAL PROCEDURE WAIT;

EXTERNAL PROCEDURE WHEAD(S:STRING);

EXTERNAL PROCEDURE INTREAD(VAR K:INTEGER);

EXTERNAL PROCEDURE SPACEBAR;

(END OF EXTERNAL DECLARATIONS *

PROCEDURE PMEN(I:INTEGER;C:CHAR;S:STRING); (*CREATES MENU
FOR OVERLAY*)

BEGIN (* PMEN *
GOTOXY(0,I);
WRITELN(C:3, ':3,S);

END; (* PMEN*)

PROCEDURE HEAD(A:STRING;J:INTEGER); (*PRINTS HEADING *
VAR I:INTEGER;
BEGIN (* HEAD *

I := (80 - LENGTH(A)) DIV 2;
GOTOXY (I,J);
WRITELN (A);

END; (* HEAD *

PROCEDURE FILEIO;
VAR QUITFLAG: BOOLEAN;

CHOICE: CHAR;
OKSET: SETOFCHAR;

PROCEDURE WRITEVEH(I:INTEGER); (*WRITES CAVES DATA TO
FILE VEH.DAT *

LABEL 109;
VAR IOR,K,LJ: INTEGER;

WVEFLAG: BOOLEAN;

BEGIN (* WRITEVEH *
HEAD('CAVES WRITE FILE MODE',0);

* WVEFLAG :=FALSE;
REPEAT

53

.~~~~~

ASSIGN(F,'B:VEH.DAT'); (*CREATES NEW VEHICLE
FILE VEH.DAT *

RESET(F);
100: (* CONTINUE *
CLEARIT(1);
GOTOXY (1,2);
K :- 3;
WRITELN('ROW ',I,' OF THE VEHICLE FILE IS: ');
WRITELN;
WRITELN('PRI # LENGTH WIDTH HEIGHT

SQFT WEIGHT');
GOTOXY (3,6);
FOR L := 1 TO MAXCOLD DO
BEGIN

INTREAD (J);
F^[L] := J
K := K + 10;
;OTOXY (K,6);

END;
SEEKWRITE(F,I);
CLOSE (F,IOR);
WRITELN;
WRITELN(-ROW # ',I,' HAS BEEN WRITTEN TO THE VEHICLE

FILE')
ASSIGN (F, 'B:VEH.DAT');
RESET (F);
CLEARIT (1);
WRITELN;
WRITELN('ROW ',I,' OF THE VEHICLE FILE IS:)
WRITELN(-PRI # LENGTH WIDTH LEIGHT

SQFT WEIGHT');
WRITE LN;
SEEKREAD (F, I);

WRITELN (F^141 , ' ,F 151,' 0,F^[161) ;
CLOSE (F,IOR);
PROMPTAT(7,-IS THIS CORRECT? TYPE Y FOR YES N FOR NO')
IF NOT YES THEN GOTO 100;
WVEFLAG :- TRUE;

UNTIL WVEFLAG;
END; (* WRITEVEH *

PROCEDURE READVEH (I: INTEGER); (* READS/EDITS CAVES DATA
FROM VEH.DAT *

VAR IOR,K,L,J: INTEGER;
RVEFLAG: BOOLEAN;

BEGIN (* READVEH *
HEAD('CAVES FILE EDIT MODEI,0);
RVEFLAG :=FALSE;
REPEAT

54

ASSIGN(F,*B:VEH.DAT'); (*OPENS EXISTING VEHICLE
FILE VEH.DAT *

RESET (F);
CLEARIT(1);
GOTOXY(1,2);
WRITELN('ROW ',I,' OF THE VEHICLE FILE IS: ');
WRITELN;
WRITELN('PRI # LENGTH WIDTH HEIGHT

SQFT WEIGHT');
SEEKREAD(F,I);

WRITELN (F^ [4] ,' ',~jj, ,~[1
CLOSE (F, IOR);
PROMPTAT(7,'IS THIS CORRECT? TYPE Y FOR YES,

N FOR NO.');
IF NOT YES THEN
BEGIN

ASSIGN (F, 'B:VEH.DAT');
RESET (F);
CLEARIT (1);
GOTOXY (1,2);
K := 3;
WRITELN('ROW ',I,, OF THE VEHICLE FILE IS: ');
WRITELN;
WRITELN('PRI # LENGTH WIDTH HEIGHT

SQFT WEIGHT');
GOTOXY (3,6);
FOR L :=1 TO MAXCOLD DO
BEGIN

INTREAD(J;
F [Ll :- J;
K := K + 10;
GOTOXY (K,6);

END;
SEEKWRITE (F, I);
CLOSE(F,IOR);
WRITELN;
WRITELN('ROW # ',I,' HAS BEEN WRITTEN TO THE VEHICLE

FILE ');
END
ELSE

RVEFLAG := TRUE;
UNTIL RVEFLAG;

END; (* READVEH *

PROCEDURE EDIT;
VAR EDQUIT: BOOLEAN;

EDCHOICE: CHAR;

PROCEDURE AENTER (AORB:CHAR);

55

VAR IOR,K,I,J,COLDIM,ROWDIM: INTEGER;
MANAME: STRING f9J;
AENFLAG: BOOLEAN;

BEGIN (* AENTER *
CLEARSCREEN;
CASE AORB OF

'A': BEGIN
ASSIGN (F, 'B:VEH.DAT');

REWRITE (F;
CLOSE (FIOR);
MANAME := 'VEHICLE';

END;
END;
AENFLAG := FALSE;
REPEAT

CLEARIT(1);
GOTOXY (1,2);
WRITE(OWHAT ROW OF THE ',MANAME,' FILE DO YOU

WANT TO ENTER ');
INTREAD(I);
CASE AORB OF

'A': WRITEVEH(I);
END;
PROMPTAT(10,'DO YOU WISH TO CONTINUE? TYPE

Y OR NI);
IF NOT YES THEN AENFLAG :=TRUE;

UNTIL AENFLAG;
END; (* AENTER *

PROCEDURE AEDIT (AORB:CHAR);
VAR I,J,COLDIM,ROWDIM: INTEGER;

MANAME: STRING [91;
AEDFLAG: BOOLEAN;

BEGIN (* AEDIT *
CL EARSC R EEN;
AEDFLAG := FALSE;
REPEAT
CLEARIT (1);
GOTOXY (1,2);
WRITE(@ENTER ROW # YOU WISH TO EDIT')
INTREAD(I);
CASE AORB OF

'A': READVEH (I);
END;
PROMPTAT(10,'DO YOU WISH TO CONTINUE TYPE

Y OR N')
IF NOT YES THEN AEDFLAG :-TRUE;

UNTIL AEDFLAG;
END; (*AEDIT *

BEGIN (EDIT)

56

CLEARSCREEN;
WJIEAD(' CAVES FILE EDITOR MENU')
EDQUIT :- FALSE;
REPEAT

CLEARIT (1);
PMEN(2.,'A','CREATE NEW VEHICLE FILE');
PMEN(4,'B','EDIT OLD VEHICLE FILE');
PMEN (6, 'E , 'EXIT');
GOTOXY (2,10);
WRITE('SELECT ONE:')
OKSET :=[ABE;
EDCHOICE := GETCHAR(OKSET);
CASE EDCHOICE OF
'A: AENTER('BI);
'B': AEDIT('B');
'E': EDQUIT :TRUE;

END;
UNTIL EDQUIT;

END; (* EDIT *

PROCEDURE DISPLAY;
VAR DISQUIT: BOOLEAN;
DISCHOICE: CHAR;

PROCEDURE DDISPLA(AORB:CHAR);
LABEL 250,275;
VAR I,J,K,IOR,ROWDIM,COUNTER: INTEGER;

CH: CHAR;
CELAG: BOOLEAN;
MANAME: STRING[91;

BEGIN (* DDISPLA *
CL EAR SC REEN ;
HEAD('CAVES SCREEN DISPLAY MODE',0);
CASE AORB OF
'A: MANAME :='VEHICLE';
IB': MANAME :='RESULT';

END;
GOTOXY (1,2);
WRITELN('THE ',MANAME,'S OF THE ',MANAME,' FILE ARE:')
WRITELN;
ROWDIM :=15;
COUNTER :-1;
CASE AORB OF

'W: BEGIN
ASSIGN (F, 'B:VEH.DAT');
RESET (F);
WRITELN;
WRITE('PRI # LENGTH WIDTH HEIGHT

SQFT');

WRITELN (' WEIGHT');

250: (*CONTINUE *

57

FOR I :=COUNTER TO ROWDIM DO
BEGIN

SEEKREAD(F,I);

WRITELN(' I,FA[41, IFL1
ROWDIM :=ROWDIM + 15;
COUNTER :COUNTER + 15;

END;
PROMPTAT(22,'DO YOU WISH TO CONTINUE TYPE

IF YES THENYORN)
BEGIN

GOTOXY (1,6);
GOTO 250;

END;
CLOSE (F,IOR);
SPACEBAR;

END;
'B': BEGIN

ASSIGN (Fl, 'B:RESULTS.DAT');
RESET (Fl);
WRITELN;
WRITE('PRI # X Y X+VEHW
WRITELN('Y+VEHL HEIGHT SQFT WEIGHT');
275: (*CONTINUE *
FOR I1: 1 TO ROWDIM DO
BEGIN

SEEKREAD(F1,l);
WRITE(' ',Fl-11,1 ,12,

WRITELN(' ',F1-[6],' ',F1l^7],' W[81j~);
ROWDIM :=ROWDIM + 15;
COUNTER :=COUNTER +15;

END;
PROMPTAT(22,'DO YOU WISH TO CONTINUE TYPE

Y OR N');
IF YES THEN
BEGIN

GOTOXY (1,6);
GOTO 275;

END;
CLOSE (Fl, IOR);
SPACEBAR;

END;
END;

END; (* DDISPLA *

PROCEDURE HCOPY(AORB:CHAR);
VAR CH: CHAR;

CFLAG: BOOLEAN;
MANAME: STRING[9J;

58

CNUMpI: INTEGER;
BEGIN (* HCOPY *
CASE AORB OF

'A': CHUM :=1;
'B': CNUM :=2;

END;
CLEARIT(1);
HARDCOPY (CNUM);

END; (* HCOPY *

BEGIN (* DISPLAY *
DISQUIT := FALSE;
REPEAT

CLEARSCREEN;
WHEAD(' CAVES FILE DISPLAY MENU ');
PMEN(2,'A','SCREEN DISPLAY OF VEHICLE FILE');
PMEN(4,'B',#SCREEN DISPLAY OF RESULTS FILE');
PMEN(6,@C','HARDCOPY OUTPUT OF VEHICLE FILE');
PMEN(8,'D','HARDCOPY OUTPUT OF RESULTS FILE');
PMEN(10,'E' ,'EXIT');
GOTOXY (2,14);
WRITE('SELECT ONE:)
OKSET :- ['A'..'EJ.;
DISCHOICE :- GETCHAR(OKSET);
CASE DISCHOICE OF
'A: DDISPLA('A);
'B': DDISPLA('B');
'C': HCOPY(lAl);
'D': HCOPY('B');
'E': DISQUIT :- TRUE;

END;
UNTIL DISQUIT;

END; (*DISPLAY *

BEGIN (*FILEIO *
CLEARSCREEN;
QUITFLAG :- FALSE;
REPEAT

CLEARSCREEN;
WHEAD(' COMPUTER AIDED VEHICLE EMBARKATION SYSTEM')
PMEN(2,'A','CREATE OR EDIT VEHICLE FILE');
PMEN(4,'B','SCREEN DISPLAY OR HARDCOPY OUTPUT');
PMEN(6, E' ,'EXIT');
GOTOXY(2,8);
WRITE('SELECT ONE:')
OKSET Ullll~~]

CHOICE :=GETCHAR(OKSET);
CASE CHOICE OF
'A: EDIT;
'B': DISPLAY;
'El: QUITFLAG :=TRUE;

59

END;
UNTIL QUITFLAG;

END; (* FILEIO *

PROCEDURE HARDCOPY (HNUM: INTEGER);
VAR F: TEXT;

CH: CHAR;
PRFLAG: BOOLEAN;
DIM,RESULT: INTEGER;

PROCEDURE SETPRINT;
VAR CH: CHAR;

FTRIES: INTEGER;
BEGIN (* SETPRINT *

PRFLAG :=FALSE;
FTRIES :=0;
REPEAT

ASSIGN (F, 'LST:');
REWRITE (F) ;
IF IORESULT = 255 THEN
BEGIN

FTRIES := FTRIES + 1;
IF FTRIES <= 2 THEN
BEGIN

WRITELN(' PUT PRINTER ON LINE')
SPACEBAR;

END;
END
ELSE

PRFLAG := TRUE;
UNTIL PRFLAG OR (FTRIES>2);

END;'(* SETPRINT *)

PROCEDURE PRTFILE(AORB: CHAR;DIM: INTEGER);
CONST MAXCOLR - 8;

MAXCOLD = 6;
VAR I,J: INTEGER;

MANAME: STRING[91;
BEGIN (* PRTFILE *
CASE AORB OF

'A': MANAME :='VEHICLE';
'B': MANAME :='RESULTS';

END;
WRITELN (F);
WRITELN(F,'THE ',MANAME.' FILE');
WRITELN (F);
FOR I :- 1 TO DIM DO
BEGIN

CASE AORB OF
'A': FOR J :=1 TO MAXCOLD DO

BEGIN

60

- -. ~ ~.-. . ,--

WRITE (F,D[IJI);
WRITE(F,'I)

END;
'8': FOR J := 1 TO MAXCOLR DO

BEGIN
WRITE (FR[I, ,JI);
WRITE(F,' ;

END;
END;
WRITELN (F);

END;
END; (* PRTFILE *

BEGIN (* HARDCOPY *
WRITELN;
WRITE('HOW MANY ROWS OF THE FILE DO YOU WISH PRINTED?')
INTREAD (DIM);
SPACEBAR;
CLEAR SCREEN;
SETPRINT;
IF PRFLAG THEN
BEGIN
CASE HNUM OF

1: PRTFILE('A',DIM);
2: PRTFILE('B',DIM);

END;
CLOSE (F,RESULT);

END;
END; (* HARDCOPY *

MODEND.

61

. ..

C. OVERLAY VEHICLE

MODULE OVERLAY19;

TYPE
STRING16 = STRING[161;
CRTCOMMAND = (ERASEOS,ERASEOL,UP,DOWN,RIGHT,LEFT,LEADIN,

TIME,FCOLOR,BCOLOR,REVIDON,REVIDOFF,
INTENONJ,INTENOFF,BLINKON,BLINKOFF);

*SETOFCHAR - SET OF CHAR;
PTR = "INTEGER;
CPMOPERATION = (COLDBOOT,WARMBOOT,CONSTAT,CONIN,CONOUT,

LIST, PUNOUT,RDRIN,HOME,SELDSK,SETTRK,
SETSEC,SETDMA,DSKREAD,DSKWRITE);

STRING40 = STRING[401;
NUMVEH l.10
MATCOLR =.8

MATCOLB 1.2
MATCOLD 1.6
MATRIXi ARRAY[NUMVEH,MATCOLR] OF INTEGER;
MATRIX2 -ARRAY(NUMVEH,MATCOLB] OF BOOLEAN;
MATRIX3 =ARRAYINIJMVEH,MATCOLDI OF INTEGER;
VECTOR =ARRAY[MATCOLDI OF INTEGER;
VECTOR1 ARRAY[MATCOLRJ OF INTEGER;

VAR
R: EXTERNAL MATRIXi;
B: EXTERNAL MATRIX2;
D: EXTERNAL MATRIX3;
IBPR,IBPC,IAP,ICP,NLNWORG,NLORG,NZORG,VEIH,SMLW,SMLL,
AREAORL,ORW,ORZ,ORLDL,ORWDW,ORZDH,SLACK,XYZ,VEHL,VEHW,
SMLZ,DECKL,DECKW,VSQFT,WGT: INTEGER;
ALLGON,CHANGE,CHECKD,SOMCHG: BOOLEAN;
SBLASTX,SBLASTY,ROWDIMB: EXTERNAL INTEGER;
F: FILE OF VECTOR;
Fl: FILE OF VECTORI;

(EXTERNAL PROCEDURES AND FUNCTIONS *

EXTERNAL PROCEDURE INTREAD(VAR K: INTEGER);

EXTERNAL PROCEDURE SPACEBAR;

PROCEDURE LOAD;
LABEL 500,600,605,610,615,620,640,645,700,705,710,711,

722, 725, 730, 736, 800, 835, 999, 9999;
CONST MAXCOLD = 6;

MAXCOLR = 8;
VAR J,I,IBPR,IBPC,IAP,ICP,NL,NXORG,NYORG,NZORG,VEHW,VEHH,

62

..-.. ~~~~7 -7O - -7- -.-. '.. - 7-.:.- -. 77

SMLX ,SMLY,SMLZ ,AREA, ORX, ORY ,ORZ, ORXDL ,ORYDW, ORZDK,
SLACK,XYZVEHL, IOR,DECKL,DECKH,DECKW,VSQFT,WGT: INTEGER;
ALLGONCHG, CHECKD, SOMCHG: BOOLEAN;

PROCEDURE B4LOAD;
VAR I,J,K,IOR: INTEGER;

BEGIN (* B4LOAD *)
WRITE('ENTER NUMBER OF VEHICLES TO BE LOADED ');
INTREAD (NL);
WRITELN;
WRITE(lTHE NUMBER OF VEHICLES TO BE LOADED IS ',NL);
WRITELN;
WRITE('ENTER DECK LENGTH 1);
INTREAD (DECKL);
WRITELN;
WRITELN('THE DECK LENGTH IS ',DECKL);
WRITE('ENTER DECK WIDTH)
INTREAD (DECKW);
WRITELN;
WRITELN('THE DECK WIDTH IS ',DECKW);
WRITELN;
WRITE(lENTER OVERHEAD HEIGHT LIMIT '
INTREAD (DECKH);
ASSIGN(F,'B:VEH.DAT');
RESET(F);
FOR I := 1 TO NL DO
BEGIN

SEEKREAD(F,I); (*TRANSFER FROM VEH.DAT TO D
MATRIX *

* .FOR J := 1 TO MAXCOLD DO

FOR K :=2 TO 3 DO
D(I,KJ : DtI,KJ + 6;

END;
CLOSE (F, IOR);
WRITELN;
WRITELN('AFTER THE 6 INCH ADJUSTMENT THE LOAD

MATRIX IS: ')
FOR I := 1 TO NL DO
BEGIN

FOR J :- 1 TO 6 DO
BEGIN
WRITE (D[I,JJ);
WRITE(' ');

END;
WRITELN;
END;
SPACEBAR;

END;

63

BEGIN (LOAD *)
B4LOAD;
WRITELN('NL IN LOAD IS ',NL);
FOR I :- 1 TO NL DO
BEGIN

IF (D[I,41 >= DECKH) THEN
DIR A:
BEGIN
WRITELN('THE LOADING PROCESS HAS BEEN STOPPED BECAUSE');
WRITELN;
WRITELN('VEHICLE PRI # ',I,' EXCEEDS HEIGHT LIMITS');
S PACEBAR;
GOTO 9999;

END;
END;
SMLL := 10000;
SMLW := 10000;
(* SELECT THE SMALLEST PERMISSABLE MARGINS IN THE

X AND Y DIRECTIONS *)
FOR J := 1 TO NL DO
BEGIN

IF (D[J,21 < SMLL) THEN SMLL := D[J,2];
IF (D[J,31 < SMLW) THEN SMLW := D[J,31;

END;
IAP := 0;
B[I,1] := TRUE;
B[I1,21 := TRUE;
AREA := 0;
ICP := 0;
500:
ICP := ICP + 1;
IF (ICP > NL) THEN GOTO 999;
NWORG := 1;
NLORG := 1;
IF ((D[ICP,21 > DECKL) OR (D[ICP,31 > DECKW)) THEN
BEGIN
WRITELN('THE LOADING PROCESS HAS BEEN STOPPED BECAUSE');
WRITELN;
WRITELN('VEHICLE PRI # ',D[I,1],' EXCEEDS BOUNDARY

LIMITATIONS');
SPACEBAR;
GOTO 9999;

END;
VEHL := D[ICP,2];
VEHW := D(ICP,3];
VEHH := D[ICP,4];
VSQFT : D[ICP,5];
WGT := D[ICP,6];
600: CONTINUE
IF (IAP = 0) THEN (* IAP=0, IMPLIES 1ST

PASS THROUGH ALGORITHM *)

64

-%* . * * ~ * * ** * ,, * 4 . ~ ' * * * * ' *

.,C.

.:' .:-.. ,... :. , ,,-..- ,.....-,,, . .-,-.,,-,...- ,,- . .,, ,.. .. ' ,- ,,- ,- .,C,- ,, . ,.. -,.., ,- ,.,- .- . ,,

BEGIN
ORW :- 0;
ORL : - 0;
IBPR :" 1;
IBPC : 1;
GOTO 800;

END
ELSE

GOTO 605;
605: (* CONTINUE *)
IF (NWORG > IAP) THEN GOTO 615;
(* TRY THE X POSITION FIRST *)
FOR IBPR := NWORG TO IAP DO
BEGIN

IF (NOT B[IBPR,1]) THEN GOTO 610
ELSE
BEGIN

IF ((R[IBPR,4]+VEHW) > DECKW) THEN GOTO 610
ELSE
BEGIN

IF ((R[IBPR,31+VEHL) > DECKL) THEN GOTO 610
ELSE
BEGIN

GOTO 640
END;

END;
END;

610: END;

NWORG := IAP + 1;
615: (* CONTINUE *)
(* SINCE NO MORE X POSITIONS TRY FOR Y *)
IF (NLORG > IAP) THEN GOTO 800;
FOR IBPR :- NLORG TO IAP DO
BEGIN

IF (NOT BIIBPR,21) THEN GOTO 620
ELSE
BEGIN

IF ((R(IBPR,51+VEHL) > DECKL) THEN GOTO 620
ELSE
BEGIN

IF ((R[IBPR,2]+VEHW) > DECKW) THEN GOTO 620
ELSE
BEGIN

GOTO 645
END;

END;
END;

620: END;

NLORG :I lAP + 1;
645: (* CONTINUE *)
NLORG := IBPR + 1;

65

ORW := R[IBPR,2];
ORL : R[IBPR,5];
IBPC :- 2;
(* FOUND AN ORIGIN NOW GO LOAD VEHICLE *)
GOTO 800;
640: (* CONTINUE *)
NWORG :2 IBPR + 1;
ORW : R[IBPR,4];
ORL R[IBPR,3];
IBPC:= 1;
(* FOUND AN ORIGIN NOW GO LOAD VEHICLE *)
(* END OF MODULE TO GET ORIGIN *)
800: (* CONTINUE *)
(* SEE IF VEHICLE WILL FIT *)
ORWDW := ORW + VEHW;
ORLDL : ORL + VEHL;
(* IF THIS IS THE FIRST VEHICLE IT MUST FIT, SO LOAD IT NOW *)
IF (IAP <= 0) THEN GOTO 835;
(*IF VEHICLE WILL NOT FIT GO GET ANOTHER ORIGIN, IMPROVE THE
DENSITY IF POSSIBLE. DO THIS BY FINDING A VEHICLE THAT WILL
INITIALLY FIT AND THEN PROGRESSIVELY MOVE THE VEHICLE TO THE
LEFT,DOWN, AND TOWARD THE FRONT, IF POSSIBLE. THAT IS, MOVE
THE VEHICLE TOWARD THE FIXED ORIGIN. REPEAT UNTIL NO FUTHER
IMPROVEMENT IS POSSIBLE IN ANY DIRECTION.*)
SOMCHG := FALSE;
CHECKD : FALSE;
700: (* CONTINUE *)
CHANGE := FALSE;
(* FIND MOST RESTRICTING VEHICLE IN LOWER Y DIRECTION IN
ORDER TO SEE IF VEHICLE WILL FIT AND TO SEEK AN IMPROVEMENT.
(HOWEVER, NO IMPROVEMENT IS POSSIBLE IF ORL IS ALREADY AT
ITS MIN (0) OR ORIGIN IS AN 'Y' ORIGIN (IBPC = 2). *)
IF (NOT SOMCHG AND (IBPC = 2)) THEN GOTO 711
ELSE
BEGIN

IF (ORL - 0) THEN GOTO 711
ELSE
BEGIN

SLACK :- ORL;
CHECKD := TRUE;

END;
END;
FOR I :- 1 TO lAP DO
BEGIN

IF ((RII,2] >= ORWDW) OR (R[I,4] <= ORW) OR
(R[I,31 >= ORLDL)) THEN GOTO 710

ELSE
BEGIN

IF (R[I,51 <- ORL) THEN GOTO 705
.* ELSE

BEGIN

66

(* GO GET ANOTHER ORIGIN *)
GOTO 605

END;
705: (* CONTINUE *)

WRITELN(@VEHICLE TEST #8');
XYZ :- ORL - R[I,5];
IF (SLACK > XYZ) THEN SLACK := XYZ

END;
710: END;

IF (SLACK >= 1) THEN
BEGIN

CHANGE := TRUE;
SOMCHG := TRUE;
ORL := ORL - SLACK;
ORLDL :- ORLDL - SLACK;

END;
711: (* CONTINUE *)
(* FIND MOST RESTRICTING VEHICLE IN X DIRECTION SIMILAR TO

ABOVE SEARCH MAKE SURE THE LOCATION IS CHECKED AT LEAST

ONCE. *)
IF (NOT CHECKD) THEN GOTO 722
ELSE
BEGIN

IF (ORW = 0) THEN GOTO 736
ELSE
BEGIN

IF (NOT SOMCHG AND (IBPC = 1)) THEN GOTO 736
END;

END;
722: (* CONTINUE *)

SLACK := ORW;
CHECKD := TRUE;
FOR I := 1 TO IAP DO
BEGIN

IF ((R[I,3] >= ORLDL) OR
(R(I,51 <= ORL) OR (R(I,2] >= ORWDW)) THEN GOTO 730

ELSE
BEGIN

IF (R[I,41 <= ORW) THEN GOTO 725
ELSE
BEGIN

GOTO 605
END;
725: (* CONTINUE *)
XYZ := ORW - R[I,4];
IF (SLACK > XYZ) THEN SLACK := XYZ

END;
730: END;
IF (SLACK >= I) THEN
BEGIN
CHANGE := TRUE;

67

..

SOMCHG :- TRUE;
ORW := ORW - SLACK;
ORWDW :- ORWDW - SLACK;

END;
736: (* CONTINUE *)
(* NOW IF ANY CHANGE HAS OCCURED DURING THE ABOVE SEARCHES,
LOOP BACK AND TRY TO FIND MORE IMPROVEMENT IN THE OTHER
DIRECTION *)
IF (CHANGE) THEN GOTO 700;
835: (* CONTINUE *)
(* THIS ORIGIN (ORW,ORL) WILL NOT RESTRICT THE VEHICLE'S
LOADING. RECORD THE VEHICLE IN ARRAY R *)
IAP := IAP + 1;
R[IAP,l] := D(ICP,11;
R[IAP,2] := ORW;
R[IAP,3] := ORL;
R[IAP,4] := ORWDW;
R[IAP,51 := ORLDL;
RIIAP,6] := VEHH;
R[IAP,71 :- VSQFT;
R[IAP,8] := WGT;
(* NOW UPDATE LOGICAL ARRAY B (THIS POINT IS NOW FILLED)

AND ESTABLISH THE 2 NEW POSSIBLE ORIGINS *)
IF (IAP > 1) THEN B[IBPR,IBPCI := FALSE;
B[IAP,lj :- TRUE;
B[IAP,2] := TRUE;
(* OVERIDE THESE TRUE SETTINGS OF ORIGINS IF NO VEHICLE CAN
POSSIBLY FIT *)
IF ((DECKW - ORWDW) < SMLW) THEN B[IAP,lj := FALSE;
IF ((DECKL - ORLDL) < SMLL) THEN B[IAP,21 := FALSE;
(* CUMULATIVE AREA *)
AREA := AREA + VSQFT;
GOTO 500;

999: (* END LOADING PROCESS *)
ASSIGN (Fl, 'B:RESULTS.DAT');
REWRITE (Fl) ;
FOR I :- 1 TO NL DO
BEGIN

FOR J := 1 TO MAXCOLR DO
FlA[J] := R[I,J];

SEEKWRITE(F, I);
END;
CLOSE (F1,IOR);
AFTLOAD (DECKL, DECKW, AREA) ;
9999:END; (* LOAD *)

PROCEDURE AFTLOAD(DECKL,DECKW,AREA: INTEGER);
VAR AA: REAL;

BEGIN (* AFTLOAD *)
WRITELN('LOADING IS COMPLETED ... USE THE "DISPLAY"

68

OPTION TO GET RESULTS');
AA :a(DECKL /12) *(DECKW/12);

WRITELN('AREA AVAILBLE WAS ',AA:7:2,1 SQUARE FEET');
WRITELN;
WRITELN('AREA USED IS ',AREA,' SQUARE FEET');
SPACEBAR;

END; (* AFTLOAD *

MODEND.

69

D. OVERLAY VHELP

MODULE OVERLAY23;

EXTERNAL PROCEDURE GOTOXY(X,Y: INTEGER);

EXTERNAL PROCEDURE CLEARSCREEN;

EXTERNAL PROCEDURE SPACEBAR;

(* END OF EXTERNAL DECLARATIONS *)

PROCEDURE HELP;

TYPE STRNG60 = STRING[40];

VAR INFO: ARRAY[1..14j OF STRNG60;
I: INTEGER;

BEGIN (* HELP *)
INFO[l] :' CAVES-COMPUTER AIDED VEHICLE EMBARKATION';
INFO[2] :' SYSTEM IS A MENU DRIVEN COMPUTER PROGRAM';
INFO3] := 'DESIGNED TO HELP EMBARKATION PERSONNEL ;
INFO[41 '- LOAD VEHICLES ON BOARD A SHIP. TO USE ;
INFO(51 :' CAVES ONE MUST KEY IN ALL PERTINENT DATA';
INFO(6] :' ABOUT THE VEHICLES INTO THE VEHICLE FILE';
INFO[71 :' THIS WILL INCLUDE THE LENGTH, WIDTH,
INFO[8] := 'HEIGHT,AREA,WIEGHT AND PRIORITY NUMBER ;
INFO(9] :' OF THE VEHICLE.
INFO[IO] := 'USE THE "CREATE FILE" OPTION TO CREATE ';
INFO[li] :- 'THE VEHICLE FILE. ONCE ALL THE VEHICLE '

INFO[12J := 'DATA IS TYPED INTO THE VEHICLE FILE, THE';
INFO(131 := '"LOAD" OPTION CAN THEN BE UTILIZED TO ';
INFO[141 := 'LOAD THE SHIP.
CLEARSCREEN;
GOTOXY (, 0);
WRITE('DIRECTIONS FOR USE OF CAVES ');
GOTOXY(0,3);
FOR I := 1 TO 11 DO

WRITELN (INFO [I);
GOTOXY (0,20);
S PACEBAR;

END; (* HELP *)

MODEND.

70

.j.

LIST OF REFERENCES

1. Bischoff, E. and Dowsland, W. B., "An Application of the
Micro to Product Design and Distribution," Journal of
Operation Research Society, v. 33, No.3 pp. 271-280,
March 1982.

2. Landing Force Training Command, Pacific, Embarkation
Reference Phamphlet, Appendix A.

3. Adamowicz, M. and Albano, A., "A Solution of the
Rectangular Cutting-Stock Problem," IEEE Transactions
on Systems, Man, and Cybernetics, v. SMC-6, No. 2, pp.
302-319, Aprill9T

4. Gilmore, P. C. and Gomory, R. E., "The Theory and
Computation of Knapsack Functions," Operations Research,
v. 14, pp. 1045-1074, November 1966.

5. Ibid..

6. Ingariola, G. and Korsh, J. F., "Reduction Algorithm for
0-1 Single Knapsack Problems," Management Science v. 20,
No. 4, pp. 460-463, December 1973.

7. Eilon, S. and Christofides, N., "The Loading Problem,"
Manaament Science, v. 17, No. 5, pp. 259-266, January
1971.

8. New York Scientific Center Report No. 320-2916, On the
Optimal Cutting of Defective Glass Sheets, by Susan G.
Hahn, October -IT.67

9. Christofides, N. and Whitlock, C., "An Algorithm for
Two-Dimensional Cutting Problems," Op on Research,

v. 25, No. 1, pp. 30-44, January 1977.

10. Steudel, H. J., "Generating Pallet Loading Patterns: A
Special Case of the Two-Dimensional Cutting Stock
Problem," Management Science v. 25 No. 10 pp. 997-1004,
October 1979.

11. Haims, M. J. and Freeman, H., "A Multistage Solution of
the Template-Layout Problem," IEEE Transactions on
Systems, Science and Cybernetics, v. SSC-6, No. 2 p.
145, April 197i.

12. Ibid. p. 146.

71

13. Eion, S. and Christofides, N. "The Loading Problem,"
MangemntScience, v. 17, No. 5, pp. 259-266, January

14. Hodgson, T. J., "A Combined Approach to the Pallet
Loading Problem," IIE Transactions, V. 14, No. 3, pp.
175-182, September I,8y.

15. Nelson, B. N., a Container Stuffing Algorithm for
Rectangular Solids When Voids May b~e Required, M.S.
Thesis, Naal Postgraduate School, Monterey, California,
1979.

16. Ibid., p. 22.

17. Ibid., p. 24.

18. Ibid., p. 31.

72

BIBLIOGRAPHY

1. Brown, D. J., Baker, R. S.. and Katseff, H. P., "Lower
Bounds for On-Line Two-Dimensional Packing Algorithms,"
Acta Informatica v. 18, 1982.

2. DeSha, E. L., Area-Efficient and Volume-Efficient
Algorithms for Loading Cargo, M.S. Thesis, Naval Post-
graduate School, Monterey, California, 1970.

&3. Eastman, S. E. and Holladay, J. C., Aircraft Loadin2
Considerations: A Sortie Generator for Use in Planning
Military Transport Operations, Research Paper P
Institute for Defense Analysis, January 1964.

4. Hodgson, T. J., IPLS: Interactive Pallet Loading
System, Research Report No. 81-9, Industrial and
Systems Engineering Department, University of Florida,
Gainesville, Florida, June 1981.

5. Ingargiola, G. and Korsh, J. F., "An Algorithm for the
Solution of 0-1 Loading Problems," Operations Research,
v. 23, November 1975.

6. Rappe, J. D., Neely, D. P., and Quinn, N. A., The Combat
Stores Ship (AFS), M.S. Thesis, Air Force Institute of
Technology Air University, 1973.

7. Wang, P. Y., Computational Techniques for Two-
Dimensional Rectangular Cutting Stock Problems, Ph.D.
Thesis, University of Wisconsin, Milwaukee, 1980.

73

L

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Associate Professor Larry Williamson 1

Code 53 Department of Mathematics
Naval Postgraduate School
Monterey, California 93943-5100

4. LtCol Don E. Bonsper
Defense Resourses Management Education Center
Code 6418
Naval Postgraduate School
Monterey, California 93943-5100

5. Capt John M. Byzewski 3
P. 0. Box 2196
Annapolis, Maryland 21404

74

FILMED

11-85

DTIC

